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The problem of fluid transport by cilia in a circular cylinder is investigated. The 
discrete-cilia approach is used in building the model, using the Green function due 
to an infinite periodic Stokeslet array in a pipe. Two different expressions are obtained 
for the Green function, one via a residue method and the other using the Poisson 
summation formula each amenable for computation in a different region. Interaction 
of the Stokeslets is investigated to see how, as distance decreases, interaction changes 
from initially separated closed vortices to a continuous flow. The singular integral 
equations for the forces in this model are now replaced by non-singular equations, 
thus overcoming the numerical difficulties in earlier works. It is found that in the pipe 
core the flow is time-independent and varies between a plug flow and a negative 
parabolic profile, in the pumping range. These results are seen to be local results due 
to the near field. Streamlines in the sublayer show eddies near the cilia bases blending 
into a uniform flow near the cilia tips. 

1. Introduction 
One of the major functions of cilia is the transport of fluid for such tasks as feeding 

and respiration in plants, transport of gametes in the reproductive system, or 
generation of feeding currents such as for Vorticella or other suspension feeders. 

Using an envelope model, Lardner & Shack (1972) calculated flow of sperm in the 
ductus efferentes of the male reproductive tract and obtained results two orders of 
magnitude less than those observed (see Blum 1974). Recognizing the need for a more 
accurate description of the cilia function, Blake (1973) proposed using his cilia 
sublayer model for the flow due to cilia above an infinite flat plate (Blake 1972), 
approximating a tubule by two parallel plates taking the one-plate solution near each 
plate, and then connecting the two profiles by a flat or a parabolic profile. 

Blake’s approach had two drawbacks. The first was the inaccuracy of his cilia 
sublayer model, in which a cilium interacts with the mean flow instead of the 
instantaneous flow field it beats in. Since the forces a cilium develops are proportional 
to the difference in velocities between its velocity and the surrounding velocity this 
may cause large inaccuracies. The cilia sublayer model was extended by Liron & 
Mochon (19764, the so-called discrete cilia approach, to include the time variations 
in the cilia layer and thus overcome this inaccuracy. Both these models use a 
distribution of Green functions due to Stokeslets along the centreline of each ciliurr: 
as an approximation to the action of the cilium. Secondly, in Blake’s (1973) approach 
the Green function used was the solution due to a Stokeslet above an infinite flat plate. 
Instead Liron (1978) argued that the proper Green function to use was the flow due 
to a Stokeslet between parallel plates, given by Liron & Mochon (1976b). This 
approach yielded a natural break-up of the flow between the plates into two 
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components; the flow due to Stokeslets action with zero flux and a positive pressure 
head, and a plane Poiseuille flow with a non-zero flux. Thus the role of the pressure 
was explained. 

In Limn & Mochon ( 1 9 7 6 ~ )  and Liron (1978) it was shown that the time-dependent 
and wave-dependent variations die out at a height of a few cilia lengths above the 
cilia layer. Thus for ‘deep’ channels (in which the channel width is much larger than 
a cilium length) the action of the cilia is like that of a boundary layer, changing the 
no-slip condition to a free-slip condition, a short distance away from the walls. This 
result was used by Blake, Liron & Aldis (1982), to show flow patterns in ciliated ducts, 
allowing for variability in action a t  different regions. This approach yields a general 
picture of the flow patterns, but can be compared with experiments only qualitatively. 
A similar crude approach was used by Liron & Meyer (1980) to explain particle flow 
above an active ciliated epithilium observed in experiments. 

In Liron (1978) similarities were argued between flow between parallel plates and 
flow in a pipe. To produce a flow similar to pipe flow we had to ‘break up ’ the infinite 
extent of the lateral direction (lateral to the direction of the flow). This was done by 
taking a periodic array of cilia in the lateral direction, and it was shown that the flow 
resulting would be similar in general features to flow in a pipe, provided the cilia are 
dense and we are modelling a wide pipe (i.e. the radius of the pipe is large compared 
to a cilium length). The periodic volumes compared were a wedge in a pipe with a 
parallelepiped in between the plates. In this paper we deal directly with transport 
in a pipe. This model is necessary if one is to obtain more than a qualitative result 
or if the ratio of cilium length to pipe radius is not large, as in the ductus efferentes. 
This is now possible as the solution due to a Stokeslet in an infinite pipe is now known 
(Liron & Shahar 1978, henceforth referred to as LS). 

In Liron (1978) the so-called discrete-cilia approach was used. The same model is 
used in the present paper. In this model the action of each cilium is approximated 
by a distribution of Stokeslets along its centreline, and after suitable periodicity 
assumptions and metachronal coordination between the cilia an expression for the 
velocities is obtained. This expression depends on the unknown strengths of the 
Stokeslets distributed along the cilia centrelines. These are then found by giving a 
kinematic description of the cilia movement, yielding a singular integral equation. 
In similar problems (Blake 1972; Liron & Mochon 1976a) the singularity was 
essentially ignored. In Liron (1978) this problem was recognized and the action of 
a Stokeslet on itself was replaced by the action of the Stokeslet on a point on the 
cilia surface at  the same cross-section. The results depended then on which point was 
chosen. We now render the equations non-singular by using a result due to Lighthill 
(1976). This enables us to obtain good accuracy. Also, this enables us to look into 
the cilia sublayer to observe how the flow inside the layer merges into the uniform 
flow it creates outside the layer. 

The basic building block of the model is an infinite periodic array of Stokeslets inside 
an infinite straight cylinder. This Green function is of special interest in itself. 
Recently it has become clear that eddies are to be expected in Stokes flows (see 
Hasimoto & Sano 1980, and references therein). An attempt at  explaining development 
of such eddies was made by Liron & Blake (1981). The flow due to a Stokeslet changes 
drastically with confinement of the flow due to boundaries. For infinite medium there 
are no eddies and velocities decay as r-l ( r  = the distance from the force). Once the 
force is next to a plane boundary the decay is as rP2 for parallel orientation of the 
force and r+ for vertical orientation. Also for vertical orientation a single (toroidal) 
eddy exists. Once two plane boundaries are present the decay rate becomes v2 for 
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FIGURE 1. The cilia-base distribution on the surface of the pipe, cilia are evenly distributed every 
distance a longitudinally, and every 2rcR,/N circumferentially. Cilia beat synchronously, with no 
phase difference in each ring, and a phase difference down the pipe causing a metachronal wave. 

a force parallel to the boundaries but with a pair of symmetric eddies (asymptotically 
we obtain a two-dimensional Hele Shaw doublet). For a force perpendicular to the 
plane boundaries an infinite set of Moffatt (1964) type eddies exist, with velocities 
decaying exponentially with r (measured in units of the distance between the 
boundaries). Inside a pipe the exponentially decaying Moffatt-type eddies exist for 
all force orientations (see LS; Blake 1979; Liron & Blake 1981). With the present 
knowledge that Stokeslets create eddies whenever boundaries or obstacles are 
present, and in particular inside a pipe we have an infinite series of eddies with 
exponentially decaying strength, the question arises as to how these Stokeslet 
solutions superimpose to obtain a continuous downstream flow. 

In  $2 we present the model used. This is essentially the model used in Liron (1978), 
except for the different geometry. In  $3  the analytic development of the infinite-array 
Green function is given. Two different expressions are derived yielding theoretical 
insight as well as enabling us to compute the solutions easily in the entire region. 
Streamlines for this Green function for several cases are given in $4. The integral 
equations including the improvement rendering them non-singular are given in $ 5. 
Examples of numerical results due to a two-dimensional beat, including streamlines 
in the cilia layer, are shown in $6. 

2. The cilia model 

R, (see figure 1) .  Let the bases of the cilia be a t  
We distribute cilia uniformly on the surface of an infinite straight pipe of radius 

I R = R,, 
2 = m a  ( m = O ,  f l ,  k 2  ,... ), \ 

@ = $ - 3 (j = 0, ..., N-l) ,  
j -  N 

where (R, z ,  @) are cylindrical coordinates. Let the coordinates of the centreline of 
the cilium based a t  (R,, 0,O) be 

5(4  t )  = ( E l h  t ) ,  t&, 4 ,  t 3 ( %  t ) )  

= ( r (s ,  t ) , Z ( s ,  t ) ,  $(s, t ) )  (0 < s < 1, 0 < t < T ) ,  (2.2) 

where l<(l, t)l = L, the cilium length (<  Ro),  and T is the period of the cilium beat. 
r(0,  t )  = R,, i.e. we are measuring from base to tip. All other cilia centrelines will have 
coordinates 

Eh,,(%t) = ( r ( & T m ) >  ma+Z(s,T,), $ j + m > T m ) ) >  (2.3) 
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where 

maK 
7, = t f -  (m = 0,  L- 1, f 2 ,  ...), 

(T 
(2.4) 

representing a metachronal wave moving down the pipe. (In Liron & Mochon (1976a) 
and Liron (1978) 7, was erroneously written as Kma f at.) Assuming the effective 
stroke of the ciliary beat cycle to be in the positive z-direction, the metachronal wave 
is called symplectic if the coordination wave is propagated in the positive z-direction 
(i.e. minus sign in 7,) and antiplectic when propagated in the negative z-direction 
(i.e. plus sign in 7 m ) .  For this wave we have wave velocity c = c / K ,  wavelength 
A = ~ K / K ,  frequency f = u / 2 x ,  period T = 2x1~. 

2.1 . T h e  $ow Jields 
We distribute Stokeslets along the centrelines with an unknown force distribution 
F = (Fl, F,, 4) and sum over all cilia. The total velocity is thus 

Here GF(R, z ,  @, <k9 n )  is the j t h  component of the velocity a t  (R, z ,  @) due to a 
Stokeslet a t  &, pointing in the kth direction, k = 1,2,3,  see (2.2), and the Einstein 
summation convention is used. GF is given in Liron & Shahar (1978). The following 
assumptions are now made. 

Assumption I .  The velocity is periodic in @ with a period of 2 x / N :  

uj(R, Z,  @, t )  = uj(R, Z ,  @ + 2 x / N ,  t ) .  

From (2.6) it follows that 

F(<k, n ( S ,  t ) )  = F(<k, o(s, t ) )  

for all n. To obtain (2.7) we have 

from (2.5) and (2.6). Since GF depends on @ and $ j + 4  only through their difference 
(Liron & Shahar 1978), it  follows that 

u.  = 5 %''S'F,(<k, n ( ~ ,  t ) )  Gjk(R, z ,  @, <k, n-l) ds, ' m - - m n = o  0 

where <k, -l = &, N-l. If there is a unique force distribution for a given velocity field, 
i.e. F = 0 if u = 0, then comparing the last line with ( 2 . 5 )  we obtain 

F(<k,n+l)  =p(<k,n)  ( n = O , - . . , N - 1 ) ,  

from which (2.7) follows. 

difference a t  At, the time it takes the wave to travel the distance a :  
Assumption I I .  The velocity is periodic in z with a period a ,  but with a time 

uj(R,z,  @ , t )  = u j ( R , z f a ,  @, t -At ) ,  (2.8) 

At = a K / a .  (2.9) 

(2.10) 

The & signs in (2.8) have the same meaning as in (2.4). It follows that 

F(<k. o ( s ,  t ) )  = F(<(s, 7 m ) ) .  
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The proof is identical with that given in Liron & Mochon (1976a), and will not be 
repeated here. Using (2.7) and (2.10), we may now rewrite (2.5) as 

Assumption III. The cilia pattern has the same wavelength as the metachronal 
wave. If we have m, different cilia positions in one wavelength then 

A = moa ( K  = 2x/m0a).  (2.12) 

This assumption is a simplification enabling us to take advantage of the periodicity. 
We shall make one more important simplification. Since cilia are dense ( N  % 1) and 

the flow is periodic in Q, with period 2x/N, i t  is almost uniform in @, so we average 
on @ over one period: 

1 r2nIN 

(2.13) 

If we denote the axisymmetric part of Gjk by vjk, we obtain, from (2.11) and (2.13), 

Gj(R9 2, t )  = N [F.(ecsj T m ) ) V j k ( R ,  2, Ch(s, t ) )  ds, (2.14) 
m--m o 

where 
th(s,t) = ( ~ ( ~ , 7 m ) , m a + Z ( s , T ~ ) , O ) .  (2.15) 

Using the relation (2.12) for the wavelength, we can transform (2.14) in a manner 
similar to that in Liron & Mochon (1976a) or Liron (1978), to obtain 

and 
m 

m --a 
D,k(R,z,g) = X wjk(R,z+mA,<). 

(2.16) 

(2.17) 

(2.18) 

The kernel Df is our basic building block, and represents the sum of an  infinite 
sequence of Stokeslet rings of radius R situated inside the pipe a t  5 + mA (m = 0, f 1,  
rf: 2, . . .). This kernel is discussed in the following sections. As already seen in Liron 
(1978), we can add in general a Poiseuille flow. This is 

vj(R)  = ---(R2-R2 1 aP ) 4 2 3  (2.19) 
4 p a Z  o 

U,(R, Z, t )  = iij(R, Z,  t )+v j (R) .  

where the pressure gradient ap/az is constant. The total velocity is thus 

(2.20) 

2.2. Pressure gradient and $lux 
Associated with fij we also obtain a pressure head in the z-direction. The pressure 
gradient can be simplified in a manner similar to the velocity, and is found to be 

(2.21) 

The kernel apl i3.z is also given in $3  
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The pressure head AP per wavelength in the z-direction is obtained from (2.19) and 
(2.21) and found to be 

The flux due to iij is zero (see Liron 1978), and thus the total flux Q is given by 

(2.23) 

We shall be interested in cilia performance in the pumping range (AP 2 0,  Q 2 0) 
so we demand -8pplaz 0 ,  i.e. the added Poiseuille flow is flowing in the positive 
z-direction. In this case the maximum pressure head will exist when Q = 0 (obviously 
for Q < 0, AP will be larger). As we shall see below in $6, this does not mean that 
one actually sees a downstream Poiseuille flow. Quite to the contrary, one sees an 
upstream Poiseuille flow almost everywhere. But the pumping range is the region 
where cilia action fall under the definition of a pump. Results for other cases are clear 
from the numerical results and the structure of the separate flow fields in (2.20). 

3. The Stokeslet arrays 
As seen in $2, our basic building block is the kernel Df(b,  z ,  &) and represents the 

sum of an infinite array of uniform Stokeslet rings of radius bR, (< R,), where R, 
is the radius of the pipe. The Stokeslet rings are distributed longitudinally (down the 
pipe) with distance AR,. 

In LS the general solution due to a single Stokedet in an infinite pipe was given. 
We thus have to take the component multiplying CQS (0) and sum an infinite series 
of these a distance AR, apart downstream to obtain Df. This can be done in two ways, 
corresponding to the two forms of the solution shown in LS, the integral form and 
the residue form, both of them necessary for computational purposes. 

3.1. TiLe integral f o r m  

We shall demonstrate derivation of the fesult for LIE. In  LS we had, for F': = (u,): 
due to a single Stokeslet, 

c( R, Z, b )  = Vi  = + %, (3.1) 

where g;, w: may be computed by the formulae in LS. These are 

(3.3) 

Here and henceforth all lengths arb non-dimensionalized with respect to  R,. 
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For v: we have 

~ ~ C ~ / L R , V :  = dAcoshz[Io(hb) (2Ko(hR)-hRK,(hR))+hbIl(hb)Ko(hR)] (R > b ) ;  

(3.6) 
s: 

for R < b we interchange R and b in (3.6). 
We first extend the integrals in (3.2) and (3.6) to the interval ( -  co, 00). Since the 

functions KO and K,  have a cut along the negative real axis, and both contain a 
logarithm (see Abramowitz & Stegun 1965), we transfer (3.2) by s = Aexp (in) to 

0 O cossz 
-4n2pg: = - G(s, R,b)ds-niS H(s,R,b)cosszds, 

s - m  Ao(s) -m 

s-, Ao(A) -a, 

where 

H(s ,  R, b) = Io(sR) (210(sb)+sb11(sb)) +sRI,(sR) Io(sb). 
Thus 

* coshz 0 

-8n2pq: - G(h,  R,b)dh-nif  H ( h ,  R, b)coshzdh. 

Similarly for v: we obtain 
m 

8n2pR0 v; = s dA cos hz [Io(hb) (2K0(AR) -hRK,(AR)) -, 

+Abl,(hb)K,(hR)]-ni~ H ( h ,  R, b) coshzdh. 
--m 

Thus the sum of the two cancels the integral that multiplies ni (which is divergent, 
and strictly speaking we should have dealt with the sum and not each component 
separately). Thus we obtain 

G(h,  R, b)  dh+ jm [Io(hb) (2K0(AR) -hRK,(hR)) 
O0 coshz s-, d,o - W  

8n2pRo V: = - 

+hbI,(hb)Ko(hR)]coshzdh (R > b ) ;  (3.7) 

for R < b we interchange R and b in the second integral of (3.7). The integrand in 
(3.7) is now even. Thus we may write (3.7) as 

m m 

8n2pRo V: = coshz f(h, R, b) dA = j ei"f(h, R, b) dh. 
-m -m 

For D; we obtain an equation of the form 
m m  

o:= c eih(%-mn)f(h, R, b) dh = I: j e-m(h/K)2xi eiAz f dh 
m --m - fYm m--m -m 

= f m  coshze-2xi(h/K)mf(h, R, b)dh 

= K c cos mKz f(Km, R, b ) ,  

m--m --m 

m 

m =-m 

where 
K = 2 7 ~ / A ,  

and we have used the Poisson summation formula in the last step. 
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In  this manner we obtain the following expressions for DF (all equations shouia 
be multiplied by a unit force per volume) : 

A=Km 

A=Km 

-ARI,(hR) I,(hb) A(A)]} ( R  > b ) ;  

for R < b we interchange the brackets in the first sum by 

[A~K,(hb)I,(hR)-AbK,(Ab) I l ( h R ) ] ;  

A ( h )  is given in (3.5) and 

A ( 4  = I,@) I,(A) -q4> 
D i  = 0 ;  

D: = a { - ( l - b 2 ) ( l - R z ) + l n -  K 1 
b 

00 + x [K,(Ab) (21,(hR) +ARIl(hR))  -AbKl(Ab) I,(hR)] cos hz 
m - 1  

A=Km 

co + X [bRI,(Ab) I l(hR) +] , (AX)  I,(Ab)-A(h) (hbIo(hR) Il(hb) 
m - 1  

A=Km 

} ( R  < b ) ;  
cos h z  

+ARI,(AR) Io(hb) + 210(AR) I,(hb))] - 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

for R > b we interchange R and b in (3.14) 
For the pressure gradient we obtain 

00 apz K -- - -{ 2( 1 - b2)  + I: A210(AR) K,(Ab) cos Ax 
az 2x2Ri m - 1  

A = K m  

} (R < 6 ) ;  (3.15) 
cos Az 

- E [h210(Ab) A(A) -AbI,(hb)] I,(AR) - 
00 

m - 1  44 
A=Km 

for R > b we interchange R and b in the first sum of (3.15) only. 
Equations (3.10)-(3.15) give the solution due to a line of Stokeslets in the z-direction. 

The z-independent components of (3.14) and (3.15) are the components left by 
averaging over one ‘wavelength’ A in the z-direction. These are 

(3.16) 
l n ( l / b ) - ( 1 - b 2 ) ( 1 - R 2 )  (R < b ) ,  
In ( l / R ) -  ( 1  -b2 )  ( 1  - R2) ( R  > b ) ,  

(3.17) 

and have the following interpretation. Dg corresponds to a flow field due to a cylinder 
ofradius b concentric to the pipe (radius 1 )  and movingwith velocity ( ~ / 4 n ~ p R , )  In ( l / b )  



Stokeslet arrays and their application to ciliary transport 181 

parallel to itself in the z-direction. Such a flow consists of a uniform motion inside 
(R < b)  and a shear flow -1nR to the outer stationary wall. No pressure head is 
associated with this flow. This flow creates a non-zero flux. To compensate to zero 
flux one adds a Poiseuille flow - ( 1  - b2) (1 - R2) in the direction of - z,  which is the 
second part of D;. This has the associated (positive) pressure gradient as in (3 .17 ) .  
Indeed, the flux due to the shearing cylinder is 

K 

4n2,uRo ' 
K 

= i ( l - b 2 ) -  

and the flux due to the negative Poiseuille flow 

-K(1-b2)  j R(1-R2)dR=-Q1. 
Q2 = 4n2,uR, , 

For Stokeslets in the radial direction one obtains 
00 K 

DR - -{ E [hRKo(hR)Il(hb)-hbKl(hR)12(Ab)]cosAz 
R-4n2pR0 m - l  

+ coshz [ RIo(hR) ( bI,(hb) - (I + hA ( A ) )  Il (Ab))  
m = 1 A(h) 

for R < b we interchange R and b in (3 .19) .  

D$ = 0, 

D,"=--- { [ARKl(hR)Il(hb)-hbKo(hR)Io(hb)]sinhz 
4x2pR0 m - 1  

h = K m  

00 

+ I: [I,(hR) (hbI , (hb)A(h) - I , (hb) )  
m-1  

h = K m  

for R < b we replace the square brackets in the first sum in (3 .21)  by 

[hRIl(hR) K l ( h b )  -hbK,(hb) 10(hB)]. 

(3 .18)  

(3 .19)  

(3 .20)  

(3 .21)  

(3 .22)  

For the pressure we obtain 
00 

PR = - ( b ( l - f b 2 ) +  K E hcoshzK,(hR)I,(hb) 
2n2Rt m - 1  

h = K m  

for R < b we replace the entire first row in (3 .23)  by 
1 " O  

b ( l - 3 2 ) - - -  E A I , ( A R ) K , ( A ~ ) c o s A z .  (3 .24)  
2b m - 1  

h = K m  
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As before, the components independent of z in (3.19)-(3.24) are the average over 2. 

These are 
D7f = 0, 

1 
26 K b( 1 --+b2) -- ( R  < b ) ,  

2n2R: i b ( l  +b2) ( R  > b ) .  

- 
pR = ~ 

This corresponds to the situation of a cylinder of radius b pushing out radially and 
uniformly. By incompressibility, no flow can result, but there will be a jump in 
pressure as we go through R = b. This pressure jump is ( ~ / 2 n ~ R : )  ( 1 / 2 b ) .  

For Stokeslets pointing circumferentially, we obtain 

DL = Dt = @ = 0, (3.25) 

m - 1  Z c o s h z ~ [ ~ l ( h r ) ~ l ( h ) - ~ ~ ( h ~ ~ ~ ( ~ R ~ ~ }  Il(4 ( R  > b ) ;  

A=Km (3.26)  

for R < b we interchange R and b in (3 .26) .  The z-independent components are now 

I (hb)  m 

D6 - - “ - k ( k - R ) + 2  4n2pR0 

P = 0. (3 .27)  

This flow corresponds to a cylinder of radius b rotating around its axis with velocity 
(~/4n~,&,) +( 1 - b2) .  This causes solid rotation inside (R < b )  and a rotational shear 
flow between this cylinder and the fixed cylinder at R = 1 ( R  > b )  (Couette flow). Both 
these flows do not have a pressure gradient associated with them. 

Computation of DF using (3.10) and onwards causes problems near the line R = 6 .  
If R + b the asymptotic natures of the Bessel functions K (exponential decay) and 
I (exponential growth) ensure exponential decay of terms in both sums contributing 
to D& (say), (3 .10) .  But for R = b the first sum does not have exponentially decaying 
terms, and the series converges very slowly, in particular for small K .  Thus a second 
form for Df is needed. 

3.2. The residue form 

The velocity components by the residue technique are given in Appendix B of LS. 
We have to take the component k = 0 in (B 3 )  there. For example, for T’; we obtain, 
after some manipulations, 

(3 .28)  

(3.29) 
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and d, are the roots in the first quadrant of the transcendental equation 

a[J:(a)+J;(a)]-2Jo(a)Jl(a) = 0. (3.31) 

A list of these roots can be found, for example, in Friedmann, Gillis & Liron (1968). 
The roots have an asymptotic behaviour of 

d, N ( n + 3 n + + i l n ( ( 2 n + l ) n )  ( n = O , l , Z ,  ...). (3.32) 

To compute Dt we have to sum over all Stokeslets a t  z = mA (m = 0, f 1, +2, . . .). 
Since for z < 0 we have Vi(z) = Vt( - z ) ,  we obtain for 0 < z < A the sum 

(3.33) 

Thus 

and Dg is periodic in z with period A .  

u,”(z) = -u,”( - 2 )  for z negative, and the corresponding sum in (3.33) becomes 
For those components in which the integral form had sin hz dependence, we have 

(3.35) 

we then obtain 

d, sinh d,( iA -2) 

Re{ 
G ~ ( R ,  b)}  (0 < z < A ) ,  (3.37) 

OZR = , Jo(d,) 3(d , )  sinh@, A 
with 

GZ,(R> b )  = B,(b) B,(R),  

and Dk is periodic in z with period A .  
For the pressure gradient we obtain 

(3.38) 

and periodicity in 2. 

Likewise we obtain 

and periodicity in z, with period A .  
For the $-direction we obtain 

1 coshc,(z-fA) Y(c  ) D6 x Jl(c, b )  J1(c, R )  (0 < z < A),  (3.42) 
4 - 47zROn,, sinhfc, A Jo(cn) 



184 N .  Liron 

where c ,  > 0 and satisfy 

J,(c,) = 0 (n = 1,2 ,  ...). (3.43) 

From the asymptotic expression for d, (see (3.32)) it follows that the terms in the 
series (3.34) and onwards decay exponentially, as long as z =#= 0, A ,  independent of 
R and b. Thus these series may be used for R x b where the expressions in the integral 
form are slowly converging. If we are looking a t  R x b and z x 0, both series are slowly 
converging, but then we are near a Stokeslet and both series should diverge in the 
limit z+O, R+b. 

The pressure head per wavelength in the case of the Stokeslets in the z-direction 
is obtained by integrating (3.15) over A .  This is equivalent to integrating (3.17), and 
we obtain 

2 
AP = - (1  - b2) .  

7tR; 
(3.44) 

This pressure head is the same as created by a single Stokeslet from - 00 to + 00. 
A similar result was obtained for Stokeslet lines between parallel plates by Liron 
(1978). In a periodic flow the pressure head per wavelength is independent of the point 
on the cross-section where i t  is measured, i.e. independent of R and q5. Thus (3.44) 
is the pressure head of the flow due to a discrete array of uniform Stokeslets, as well 
as the pressure head due to a series of rings. 

4. Flow fields due to the Stokeslet arrays 

function $(R, z ,  b )  via 
Since the flows we are dealing with are axisymmetric we can define a stream 

Using (3.10), (3.11) and (3.14), one obtains 

where 
-fR2(1-b2)(2-R2)-$R21nb ( R  < b ) ,  

--:R2( 1 - b2) ( 2  - R2) -+R2 In R++(R2 - b2) 
(4.3) 

( R  > b ) ,  
f (R,b)  = 

and 

hR Ko(hb) IO(h R )  -hb K,(hb) I l(hR) ( R  < b ) ,  i hRKo(hR)Io(hb)-hbKl(hR)Il(hb) ( R  > b) .  
(4.4) flV, b ,  R )  = 

In the residue form we obtain 

where B, and B, are defined in (3.30) and (3.36). 
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FIGURE 2 .  Streamlines for Stokeslets in the z-direction (see (4.2) and (4.5)) situated at a radius 
b = 0.95R0, for: (a )  K = 0.3; (b )  3 ;  (c) 30. K = 2 x / A  is the wavenumber of the axial array of 
Stokeslets. The flow field is symmetric around z = 0 and z = .&4, and only the range 0 < z < $A is 
shown. 
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Similarly, we obtain 

KRo R { [bK,(hR) I,(hb) - RKo(hR) I,(hb)] sin hz +R=z& m - l  

h = K m  

for R < b we interchange R and b in the curly brackets. In  the residue form 

* 1 sinhd, ($A--z)  
+R = -Re{-R RO I: - 

4 w  , - J:(d,) sinh i d ,  A B,(R) B,(b)} (0 < z < A ) ,  (4.7) 

and $R is periodic in A .  (Again notice that we have to multiply by a unit force per 
volume to obtain the proper dimensions.) 

In  the following figures we shall depict the functions ( p / R o )  $R and ( p / R o )  p for 
various A and b. One of our goals is to see how the single Stokeslet, creating a series 
of closed vortices, with exponentially decaying strengths, interacts with neighbouring 
Stokeslets. From (4.5) and (4.7) we see that p" is symmetric around z = +A, and 31.R 
antisymmetric, so only lines in the range 0 < z < +A need be shown. 

Figures 2 (a) and 3 ( a )  show I,P and $R for K = 0.3 and b = 0.95. For K = 0.3 we 
have A = 20.944. Thus all interaction with neighbouring Stokeslets is completely 
negligible and we obtain essentially the solution due to a single ring of Stokeslets in 
an infinite pipe. For large A ,  as in this case, we see from (4.5) and (4.7) that unless 
z is very close to zero, p" - exp (-Re (d,) z )  = exp (-4.466 z ) ,  since the second term 
in the series is only a few percent of the first term already a t  z = 1.0. Thus the solution 
is exponentially decreasing, and $ is shown only up to about z = 4.0. Breaking up 
into disjoint cells is seen in all cases. Both 9" and +R are similar in appearance, except 
near the Stokeslet line z = 0, where p creates a single vortex whereas @ R  creates a 
pair of them, z = 0 being a streamline. Figures 2(b) and 3 ( b )  show p and $R for 
K = 3.0 ( A  = 2.0944). The distance is still over twice the radius, but some interaction 
may be expected. 

Figure 2 (b )  shows that interaction has not yet taken place. For values of b closer 
to the axis the retarding effect of the wall is less dominant and some interaction does 
take place. An example is shown in figure 4, where a complete wavelength is shown. 
Figure 3 ( b )  shows + R .  Because z = +A is always an antisymmetry line we have 
separated cells of flow, and the cells are 'squeezed' into the width of +A. 

Figures 2 (c) and 3 ( c )  show streamlines for K = 30.0 ( A  = 0.20944). Here we have 
five Stokeslets per unit length downstream, and we expect strong interaction. The 
z-dependence of p", as seen in (4.2), is in the two infinite series. The first has terms 
which decay exponentially like exp [ - ~m 12, -A/], and the second has terms decaying 
exponentially like exp { - ~ m [ ( l - R )  + (1 - b)]) .  If I b - R I is not too small both series 
are small compared with f ( R ,  b )  in (4.2), and we expect streamlines parallel to the 
z-axis. Indeed that is what we obtain in figure 2 (c), with the fluid moving downstream 
near the walls and upstream near the axis. For smaller values of b ,  directions are 
reversed, but the same phenomenon is seen. Notice that even a t  b = 0.95 a density 
of five Stodeslets per unit length is sufficient to completely annihilate the vortices 
and create a continuous non-separated flow. Equation (4.7) shows very little variation 
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FIGURE 3. Streamlines for Stokeslets in the radial direction (see (4.6) and (4.7)) situated at a radius 
b = 0.95R0, for: (a) K = 0.3; ( b )  3;  (c) 30. The flow field is antisymmetric around z = 0 and z = &4, 
and only the range 0 < z < $4 is shown. 
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FIQURE 4. Streamlines for Stokeslets in the z-direction (see (4.2) and (4.5)) situated at a radius 
b = 0.25R0 for K = 3.0. K = 2 x / A  is the wavenumber of the Stokeslets. A full period 0 < z < A is 
shown, and interaction is seen causing a continuous stream near the centre of the pipe and near 
the pipe wall. 

of kR in z for 0 < z < ;A, and from (4.6) kR = 0 at z = 0, $4. Thus we obtain the 
streamlines obtained in figure 3c. The flow created enhances a parallel flow (parallel 
to axis) even in this case where the Stokeslets are directed radially, except very near 
the antisymmetry lines x = 0 and z = +A. 

5. Integral equations for the force distribution 

has been done in Liron & Mochon (19764 and Liron (1978) : 
To obtain the force coefficients, we fit kinematically to the observed cilia beat as 

m,-1 1 

= vj(E?(s, t ) )  + N  I: FK(5%, t ) )  Df (fl?(S, t ) ,  E X  t )  + (n-0 a ,  <'(a, t ) )  d8 

(n = 0,1,  ..., m o - l , j  = 1,2), 
1 - 0  0 

(5.1) 

where t1 is defined in (2.17). The Poiseuille flow vj is determined by first solving the 
extreme case : 

(i) Q = 0, A P  = A P a x ,  for which vj = 0 in (5.1). 

Equations (3.1) can be solved and then APmax computed from (2 .22 ) .  
(ii) Take any Q > 0;  then from (2.23) one obtains the pressure gradient for the 

Poiseuille flow, computes vj from (2.19), and then solves (5.1). A P  is computed from 
(2.22) to check that A P  2 0, and we are in the pumping range. In  practice, the 
Poiseuille-flow contribution in the cilia layer is small compared to the cilia velocities. 
This implies that the forces change very little by adding vj, and one can obtain the 
flow with A P  = 0 and Q = Qmax, by substituting 

ap A P ~ X  -_ =--- 
a2 A 

in (2.19) for vj, and then solving (5.1). 



Stokeslet arrays and their application to ciliary transport 189 

Then, combining (5.1), (2.22) and (2.19), we obtain 

(n = 0,  ..., m o - l , j  = 1,2) ,  (5.2) 

where 01 = 0 for Q = 0 and A P a x ,  and 01 = 1 for Q""" and AP = 0. 
The equations are non-dimensionalized by using the timescale u - l ,  lengthscale Ro, 

velocity scale uRo, force scale puR;  and pressure scale pu .  Redefining ( d / 4 n 2 )  F as 
F and ( 4 n 2 / ~ )  D f  as Of, (5.2) in non-dimensional form becomes 

m,-1 
t ,  = E (F,($(s, t ) )  Df(t;:(S, t ) ,  [:(S, t )  + (n-1) a ,  tz(s, t ) )  

at 2-0 0 

+&j201( '  -[:(S,t)2)F2(flz(s7t)) (1-6i(s>t)2))>ds 
( n = 0 , 1 , 2  )..., m 0 - 1 , j = 1 , 2 ) .  (5.3) 

Equation (5.3) causes no problem, except when s = S and 1 = n. Df then becomes 
singular. In  Liron (1978) this was overcome by replacing the action of the Stokeslet 
on itself, by a point at the same cross-section on the cilium surface. This was not 
satisfactory, since without an adjoining Doublet distribution it depended on the 
location on the surface, even on the same cross section. Lighthill (1976) has 
demonstrated that if we distribute Stokeslets and doublets in an appropriate way 
on the centreline of a flagellum then each cross-section element will move locally with 
a velocity approximately equal to (1/4n,u) F, +f, where F, is the component of force 
in the normal direction. f is the contribution coming from the distribution of 
Stokeslets along the centreline a distance ae* from the point of observation and on, 
the flagellum radius and a is. The error incurred is O ( E ) ,  where 6 is the slenderness 
ratio. Using this idea, we would like to replace Df in (5.3) when s = 5 and I = n by 
an equivalent expression. Df is the axisymmetric part of an infinite sequence of 
Stokeslets, or the solution due to an infinite sequence of Stokeslet rings. 

Velocities due to F, are 

1 8; = 81 - - - 47cP sin 0 cos 0, J 
(5.4) 

where 0 is the angle between the cilia direction and the pipe surface (see figure 5). 
The contribution due to f at the point R = b ,  z = 0 is 

lim [ D f ( R ,  z ,  b,  0) - single Stokeslet in 00 medium at R = b, z = 01. 
R + b  
z+o  

Thus in f we take into account all other parts of 0;: the rest of the Stokeslet ring, 
all images of the entire ring, and all other rings. This computation cannot be done 
directly. We first subtract the entire ring plus image contribution, then add ring 
image, then add the contribution of the rest of the ring to the point of observation 
(averaged over one @-period of 2n/N). 

7-2 
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FIQURE 5 .  Geometry for a cilium movement. Slender body implies that the point P moves in the 
direction of the normal with velocity Fn/4n,u, plus velocities due to the effect of cilium parts further 
from P (see $5). 

The final result is as follows. In  (5.3), whenever we are to compute D f ( b ,  z, b, z) ,  we 
replace it by B,k(b), where 

n Dk = B R  = -sinOcosO, KN (5 .5)  

n 1 n 
sin2 8+- In cot -+ &, (5.6) 

(5.7) 

2 ~ b  4N 

n 1 n 3  n -  
= - cos2 B+ - In cot cos- + Dg. 

KN 2 ~ b  4N 2 ~ b  2N 

For O see figure 5 .  & and @ are given by 

and 

Here 

(5.9) 

A(h) is defined in (3.5), d ( h )  in (3.12), B, in (3.30), B, in (3.36) and d, in (3.31), and 
(3.32). 

In summary we solve (5.3), which are non-singular, by replacing D,k by Bf 
whenever DF is singular. 

6. Numerical results 
6.1. Description of moving cilium and solution of integral equations 

We use here the same beat as was used in Liron & Mochon (1976) and Liron (1978). 
The beat is depicted in figure 6, where increasing numbers indicate cilia positions at  
consecutive fixed time intervals. The description of the moving cilium is achieved in 
a manner similar to that in the above mentioned papers. We discretize the cilium, 
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FIGURE 6. The model for cilia beat. (a) Cilia positions in one wavelength h = 1.4L, with L = cilium 
length. (b)  Cilium positions in time. Cilia are assumed to go through the same beat, with a phase 
difference down the pipe. Increasing numbers indicate consecutive fixed time intervals. 

taking M ,  intervals, the mid-points sk = ( k - + ) / M ,  ( k  = 1 , 2 m  . . . , Nl) representing 
the intervals. For a fixed sk we fit its periodic movement by a Fourier-series expansion 

M2 
&(sk, t )  = $oi(sk) + Z [ani(sk) cosnt+bni(dk) sinnt]. (6.1) 

n-1 

This we differentiate to obtain the cilium velocities. I n  our calculations we took 
M ,  = 7 ,  M ,  = 3 .  (A check on the accuracy of velocity profiles as a function of M,,  
the number of intervals taken along a cilium show M ,  = 7 to be sufficient with only 
small changes for larger values.) The coefficients in (6.1) are found by matching at 
discrete times t ,  = 2 d / ( 2 M 2 +  1 )  (1 = 0, ..., 2 M J .  Equation (5.3) is then discretized by 
taking the discrete points sk and t,. The integration is done using the midpoint rule. 
Since we are looking a t  a two-dimensional (R,  z )  flow we have two components of force, 
and altogether 2M, M I  linear equations and unknowns. In  (5.5)-(5.7) we also have 
the number N of cilia on the circumference of a cross-section. Assuming that cilia 
are spaced 1 pm apart in the @-direction, N = 2nR,, where R, is measured in pm. 
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FIGURE 7. Velocity profiles inside the pipe core. Only the downstream velocity exists, and is a 
function of R only (independent of time and of z) .  The two extreme cases in the pumping range 
are exhibited: Q = 0, APmax, and Q""", AP = 0. A11 other profiles are parabolas in between. ( a )  
R, = 500 pm, L = 0.03 R,. ( b )  R, = 75 pm, L = 0.2R0. Closer to the cilia layer the velocity shows 
( 2 ,  t)-dependence. 
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FIGURE 8. Streamline pattern in the ciliary sublayer for the time corresponding to the cilia 
configuration in figure 6(a) .  z = 0 corresponds to cilia base no. 1. Here R, = 75 pm, a = 1 
corresponding to AP = 0, see also figure 7 ( b ) .  

This is the value we took in the numerical examples below. The calculation of Of 
is discussed in $3. 

and Di causes no problems, and so is the 
computation of the infinite integrals, unless b is extremely close to 1. 

Calculation of the infinite series for 

6.2. Velocity profiles 
We demonstrate the results by calculating the two extreme cases 

a = O(& = 0, APmax), and a = 1 ( A P  = 0,  Q"""). 

I n  figure 7 we present two examples of the flow inside the pipe, and outside the 
cilia layer. Similar to the results obtained for transport between parallel plates the 
time (or z )  variations die out a t  about 2 ciliary lengths away from the layer, and we 
obtain a parabolic profile in the core region which is in the direction opposite to the 
beat when the flux is zero. The addition of a Poiseuille flow such that altogether 
AP = 0 results in a plug flow which is stronger for a larger ratio of length of cilium 
to radius. In figure 7 ( a )  we show the case of L = 15pm, R, = 500 pm and (b)  
L = 15 pm, R, = 75 pm. 

6.3. The cilia sublayer 
As we are now solving (5.3) with the corrections (5.5)-(5.7) and the equations are 
non-singular, we can more reliably than before look a t  the flow inside the cilia 
sublayer. To do this, since we have (at every time instant) 

+aajz(l - R 2 )  ~ ( C ' ( S ,  t ) )  (1  - ( ' ( s ,  t) ' )]  ds, (6.2) 

we can define a stream function @ such that 
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and obtain 

+a(+R2-+R4) &(Cz(s, t ) )  (1  -<",a, t) ' ) ]  ds. (6.4) 

The functions (k = 1 ,2 )  are given in (4.6) and (4.2) respectively. 
In figure 8 we show streamlines at  time t corresponding to the cilia configuration 

in figure 5 ,  with z = 0 at the base of cilium no. 1, for the case R, = 75, a = 1 .  Inside 
the cilia layer, close to the base there are closed vortices and counter-currents, but 
already towards the end of layer the flow becomes unidirectional with variations 
which are rather small. As mentioned above, at about two cilia lengths the flow 
becomes completely uniform. 

7. Discussion 
We have presented here a model of cilia fluid transport in a pipe. The cilia are 

modelled by the discrete-cilia approach using the singularity method and slender-body 
theory. As expected from previous work on cilia transport between parallel plates, 
although velocities change inside the ciliary layer, time variations die out as we move 
away from the layer and the flow becomes time-independent, and varies from a 
backward parabolic profile to a forward plug flow, in the pipe core, (depending on 
flux conditions) in the pumping range. The problem of solving numerically the 
singular equation for the force-coefficients has now been satisfactorily overcome as 
explained in 9 5 .  

The basic building block in the model is the Green function Df (see (2.18)). This 
is the flow field due to an infinite series of Stokeslets and is discussed extensively in 
@3 and 4. This function is used in (6.2) to compute the velocity field. Since the single 
Stokeslet field decays exponentially away from the force's point of action, the 
parabolic field obtained is practically a local result, due to the near field, the cilia 
as of a few radii away contributing exponentially small corrections to it. It follows 
that given the flux (or pressure rise per wavelength) the parabolic profile would obtain 
provided we have a straight stretch of a few radii length. Convoluting the pipe would 
thus not change the result, and we would expect to observe the same local profile 
along the tube. Thus although the model is for an infinite straight pipe, the results 
are applicable to a convoluted pipe like the oviduct. As already explained in Liron 
(1978), the case Q = 0 might be realistic during ovulation, when the Ampulla-isthmus 
junction is completely or almost completely occluded. The back flow in the pipe core 
might be responsible for the ability of sperm to be moved up the oviduct from the 
uterus to the site of fertilization, even though cilia beat is directed towards the uterus. 
As observed by Blandau (1969) spermatozoa were observed to be swept along by the 
ciliary current when applied to the surfaces of opened oviducts a t  such a rate that 
their own flagellar activity was of almost no avail against the current. 

Streamlines in the cilia layer show a directional flow in the upper part of the layer 
but vortices in the lower part. This may explain observations claiming backflow near 
the cilia bases. Obviously, the vortices here are only an example, for the given beat 
used, but they show that even here the complicated pattern blends nicely into the 
parallel flow further away from the wall. 

The examination of the Green function Dj" shows that already a t  a distance of 0.2R0 
between Stokeslet rings the flow created has practically a single velocity component 
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(downstream) which has a parabolic profile (Poiseuille plus shear flow). Thus the flow 
field created by cilia which are densely packed on the surface of the pipe is a continuous 
flow as described above. The same flow would be created by a cluster of small beads, 
sedimenting in a pipe, as in the Segr6 & Silberberg (1962) results. 
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